首页> 外文OA文献 >How Does the Low-Rank Matrix Decomposition Help Internal and External Learnings for Super-Resolution
【2h】

How Does the Low-Rank Matrix Decomposition Help Internal and External Learnings for Super-Resolution

机译:低秩矩阵分解如何帮助内部和外部   学习超分辨率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wisely utilizing the internal and external learning methods is a newchallenge in super-resolution problem. To address this issue, we analyze theattributes of two methodologies and find two observations of their recovereddetails: 1) they are complementary in both feature space and image plane, 2)they distribute sparsely in the spatial space. These inspire us to propose alow-rank solution which effectively integrates two learning methods and thenachieves a superior result. To fit this solution, the internal learning methodand the external learning method are tailored to produce multiple preliminaryresults. Our theoretical analysis and experiment prove that the proposedlow-rank solution does not require massive inputs to guarantee the performance,and thereby simplifying the design of two learning methods for the solution.Intensive experiments show the proposed solution improves the single learningmethod in both qualitative and quantitative assessments. Surprisingly, it showsmore superior capability on noisy images and outperforms state-of-the-artmethods.
机译:明智地利用内部和外部学习方法是超分辨率问题的一个新挑战。为了解决这个问题,我们分析了两种方法的属性,并对它们的恢复细节进行了两个观察:1)它们在特征空间和像平面上都是互补的; 2)它们在空间上的分布稀疏。这些启发我们提出了一种低排名的解决方案,该解决方案有效地整合了两种学习方法,从而获得了优异的成绩。为了适应此解决方案,内部学习方法和外部学习方法经过了量身定制,以产生多个初步结果。我们的理论分析和实验证明,所提出的低秩解不需要大量的输入即可保证性能,从而简化了两种学习方法的设计。大量实验表明,所提出的解决方案在定性和定量上均改善了单一学习方法。评估。令人惊讶的是,它在嘈杂的图像上显示出更出色的功能,并且胜过最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号